US 2002/0100017 A1l

FIG. 2B), and so on, regardless of what other configurations
may specify. With the various configurations, updates to
applications via new assemblies are possible, but only in a
safe, controlled manner, with the machine administrator
having the final determination.

[0056] Although complete compatibility of a shared
assembly should be thoroughly tested, even the smallest
change to a shared assembly’s code may cause an incom-
patibility with some applications that consume them. In such
an event, in the second alternative mode wherein the pub-
lisher configuration data can override the application con-
figuration data, the application configuration file may
specify that “safe mode” binding should be applied to the
specified assembly. In the safe mode, the publisher configu-
ration resolution stage is avoided, whereby the application
operates with no publisher configuration overrides. To use
the safe mode, the application configuration 218 (or other
system setting, e.g., set by an administrator) can explicitly
instruct the operating system to bypass the interpretation of
the publisher configuration 220, whereby the application
author (or an administrator) controls the version that is
bound to the application. In FIG. 2B, this is represented by
the wide arrow (labeled “Safe Mode”) from block 218 to
block 224. Any administrator policy still may make the final
decision, however.

[0057] 1t should be noted that the safe mode bypasses
publisher configuration in the second alternative mode,
which may affect the version that is used even when the
administrator configuration includes an instruction related to
a version of that assembly. By way of an example, as shown
in FIG. 2B, consider the application configuration specify-
ing the safe mode. If the administrator configuration
includes an instruction to change version 4.0.0.0 back to
version 3.0.0.0, but no others with respect to this assembly,
the change to version 3.0.0.0 will not be implemented in the
safe mode because the application configuration has speci-
fied version 2.0.0.0, whereby the administrator configuration
will see version 2.0.0.0 (and not see version 4.0.0.0) to
change it. However, if not in the safe mode, the version will
be changed to 3.0.0.0 because the publisher configuration
will have first changed the version to 4.0.0.0 as described
above, whereby the administrator configuration instruction
for version 4.0.0.0 will apply and version 3.0.0.0 will be
restored. To provide flexibility, a configuration instruction
can specify a range of versions to redirect, e.g., change any
version in the range from 1.2.3.4 to 5.6.7.8 to version
9.0.0.0.

[0058] Note that while two alternative modes are primarily
described herein, it can be readily appreciated that other
such modes are feasible. For example, it is feasible to have
a third alternative mode similar to the first alternative mode
described above wherein a publisher configuration is inter-
preted before an application configuration, but the further
including an administrator configuration as in the second
alternative mode. Indeed, the present invention is not limited
to any particular ordering, number and types of configura-
tions, and so on, but rather contemplates any such combi-
nations and permutations.

[0059] As described above, binding starts with a reference,
for example, that at least contains the name or other iden-
tifier of the assembly. A fully-specified assembly reference
(e.g., in the manifest and/or configurations) contains the

Jul. 25, 2002

information necessary to disambiguate one assembly from
another. Dependent assembly references, which are con-
structed at link time, are fully-specified assembly references.
However, under some circumstances, it may be desirable to
provide only a subset of the assembly identity information,
yet still issue a bind. For example, a partially-specified
assembly reference may be missing public key, and/or
version fields.

[0060] Because partially-specified references are ambigu-
ous, the binding process can employ special logic to locate
and bind to these assemblies. More particularly, a first step
to resolving a partial-specified assembly bind is to search for
an assembly in the application directory that satisfies the
specified fields in the assembly reference. The application
directory is probed first, (as opposed to immediately search-
ing for a matching assembly in the global assembly cache
212), to provide an application author/deployer with some
control over the assembly that is finally retrieved through a
partially specified bind request. In other words, because the
global assembly cache 212 is a global install location, which
can be used by all applications, searching the global assem-
bly cache 212 first may result in an assembly being returned
that was not intended by the original author/deployer.

[0061] Should the binding process be unable to locate a
matching assembly in the application directory, a lookup in
the global assembly cache 212 may be performed to attempt
to find a matching assembly, (e.g. for strongly-named files in
the first alternative mode). If a match is not found in the
global assembly cache 212, the assembly bind may be failed
(e.g., in the first alternative mode), or a download can be
attempted (e.g., in the second alternative mode). If a match-
ing assembly has been located, the binding process (e.g., the
binding/initialization mechanism) reads the manifest data
for the assembly and constructs a new, fully-specified
assembly reference from this data. Because the assembly
reference is now fully-specified, binding configuration can
be applied on this reference, as described above, that is, the
bind proceeds as if the original assembly reference was
fully-specified, with the above-described logic used to
specify one assembly file that, if located, satisfies the bind
request.

[0062] FIG. 3A generally represents the interpreting of
the manifest and configurations in the first alternative mode,
beginning when one (or more) of a set of activation APIs
(application programming interfaces) 300 are called in
response to a request to run an application program, e.g., the
application program 200. It should be noted that not every
assembly used by an application needs to be specified in the
application manifest, nor does each assembly manifest have
to specify all of its dependencies. For example, the archi-
tecture allows for binding to components, as was previously
done, so a component (such component files are not usually
referred to as assemblies) not specified in a manifest would
expect to be found through a search path. In addition, it is
feasible for the architecture to allow a default assembly
version to be used when a particular version of an assembly
is not specified in a manifest. When more than one version
of an assembly is available, the default assembly is the
most-recent version, however it is possible for an adminis-
trator or user to set (e.g., via interaction with the operating
system through a dialog box, property sheet or the like) any



